GAMES101_notes_05

GAMES101: 现代计算机图形学入门

笔记05:

Lecture 17: Materials and Appearances

What is Material in Computer Graphics?

Material == BRDF

Diffuse / Lambertian Material 漫反射材质

Light is equally reflected in each output direction

  • Suppose the incident lighting is uniform:
  • $L_o(\omega_o) = \int_{H^2}f_rL_i(\omega_i)\cos\theta_i\mathrm{d}\omega_i = f_rL_i\int_{H^2}\cos\theta_i\mathrm{d}\omega_i = \pi f_r L_i$
  • $f_r = \frac{\rho}{\pi}$, 反射率$\rho$

Glossy Material 类似金属的光滑材质

Ideal reflective / refractive material(BSDF)

Perfect Specular Reflection

  • $\omega_o + \omega_i = 2\cos\theta\vec{n} = 2 (\omega_i\cdot \vec{n})\vec{n}\quad \Rightarrow \quad \omega_o = -\omega_i + 2(\omega_i \cdot \vec{n})\vec{n}$

Specular Refraction

  • In addition to reflecting off surface, light may be transmitted through surface.
  • Light refracts when it enters a new medium

Snell’s Law

  • Transmitted angle depends on
    • index of refraction(IOR) for incident ray
    • IOR for exiting ray
  • $\eta_i\sin\theta_i = \eta_t\sin\theta_t$
  • $\cos\theta_t = \sqrt{1 - (\frac{\eta_i}{\eta_t})^2(1 - \cos^2\theta_i)}$ 当入射介质折射率大于折射介质时,可能会发生全反射现象(Snell’s Window/Circle)

Fresnel Reflection / Term 菲涅耳项

  • Reflectance depends on incident angle(and polarization of light)
  • 对于绝缘体,当入射角角度非常小的时候,反射的能量就非常小,当入射角接近90度时,几乎没有折射发生(大部分能量被反射)
  • 对于导体,其菲涅耳项与绝缘体不同,无论入射角方向如何,反射的能量都占大多数
  • Approximate: Schlick’s approximation 对两种介质都有较好的近似
    • $R(\theta) = R_0 + (1 - R_0)(1 - \cos\theta)^5$
    • $R_0 = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$ 基准反射率

Microfacet Material

Microfacet Theory

  • Rough surface
    • Macroscale: flat & rough 从远处看是材质
    • Microscale: bumpy & specular 从近处看是几何
  • Individual elements of surface act like mirrors
    • Known as Microfacets
    • Each microfacet has its own normal

Microfacet BRDF

  • 如果微表面各处法线在宏观上差别不大,那么就得到了glossy材质
  • 如果微表面各处法线在宏观上区别很大,那么就得到了漫反射材质
\[f(\mathbf{i}, \mathbf{o}) = \frac{\mathbf{F}(\mathbf{i}, \mathbf{h})\mathbf{G}(\mathbf{i}, \mathbf{o}, \mathbf{h})\mathbf{D}(\mathbf{h})}{4(\mathbf{n}, \mathbf{i})(\mathbf{n}, \mathbf{o})}\]

Isotropic/Anisotropic Materials(BRDFs) 各向同性/各向异性

Key: directionality of underlying surface

Properties of BRDFs

  • Non-negativity
    • $f_r(\omega_i\rightarrow\omega_r)\ge 0$
  • Linearity
    • $L_r(p, \omega_r) = \int_{H^2}f_r(p, \omega_i\rightarrow \omega_r)L_i(p, \omega_i) \cos \theta_i\mathrm{d}\omega_i$
  • Reciprocity principle
    • $f_r(\omega_r\rightarrow\omega_i) = f_r(\omega_i\rightarrow \omega_r)$
  • Energy conservation
    • $\forall \omega_r,\quad \int_{H^2}f_r(p, \omega_i\rightarrow \omega_r)L_i(p, \omega_i) \cos \theta_i\mathrm{d}\omega_i \le 1$
  • Isotropic vs. anisotropic
    • If isotropic, $f_r(\theta_i, \phi_i; \theta_r, \phi_r) = f_r(\theta_i, \theta_r, \phi_r - \phi_i)$
    • Then, from reciprocity, $f_r(\theta_i, \theta_r, \phi_r - \phi_i) = f_r(\theta_i, \theta_r, \phi_i - \phi_r) = f_r(\theta_i, \theta_r, \phi_r - \phi_i )$

Measuring BRDFs

Lecture 18: Advanced Topics in Rendering

Lecture 19: Cameras, Lenses and Light Fields